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Determination of subcritical crack growth on 
glass in water  from lifetime measurements on 
Knoop-cracked specimens 
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The crack growth behaviour of glass in water is investigated by use of lifetime measurements 
carried out with Knoop-damaged specimens in four-point bending tests. The method is out- 
lined in detail and the crack growth law - exhibiting a threshold stress intensity factor 
Kth = 0.35 MPam 1/z - is determined. The initial and final crack size data as well as the fracture 
toughness are given by Weibull representations. 

1. Introduct ion  
The effect of subcritical crack growth appears in most 
ceramic materials. In case of linear-elastic material 
behaviour the crack growth rates are dependent only 
on the stress intensity factor K~ which is defined by 

KI = a a 1/2Y (l) 

where a is the crack depth, a the applied stress and Y 
a geometric function, which depends on the crack 
shape and the specimen geometry. The knowledge of 
the relation 

da/dt = ' u ( K i )  (2) 

is of  high importance for lifetime calculations. Whilst 
the dependency can often be described by a simple 
power-law for moderate crack-growth rates over 
several decades, a deviation at very low crack growth 
rates has to be taken into consideration. 

Especially for glass in water, a threshold of  subcriti- 
cal crack growth most likely exists. Already more than 
10 years ago the measurements of Wiederhorn and 
Bolz [1] and Evans [2] using the "double cantilever 
beam technique" (DCB) and the "double torsion 
method" (DTM), respectively, showed a typical 
threshold behaviour for macroscopic cracks. Due to 
the study of Fournier and Naudin [3] on the reliability 
of the DTM for extremely low crack growth rates the 
DTM results became unsafe, because only crack 
growth rates v > 10 -9  msec -~ seem to be sufficiently 
accurate. 

Various theoretical investigations of subcritical 
crack extension - mostly based on the idea that 
thermal transients both break and re-establish bonds 
- predict the existence of  a threshold as well [4-7]. 

As a simple method to determine extremely low 
crack growth rates, the lifetime measurement seems to 
be most appropriate. 
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2. Basic  f o r m u l a e  
The lifetime tr of  a specimen loaded with an initial 
stress intensity factor K~i can be written 

tr - (ayi)2 JK, Kj dK1 (3) 

where Y~ is the geometric function of the initial crack, 
and Kjc is the fracture toughness of the material con- 
sidered. If  the initial stress intensity factor is not con- 
stant along the crack tip line, the maximum occurring 
value has to be inserted. 

To evaluate lifetime measurements with different 
stresses it is suitable to consider the quantity 

trCr 2 Yi 2 = 2 JK, i KI dKt (4) 

which is only a function of the initial stress intensity 
factor. 

By measuring the lifetime tr for different adjusted 
initial stress intensity factors gl i  it is possible to deter- 
mine v(K,)  from Equation 4. An appropriate 
procedure for the evaluation of crack growth rates 
from lifetime measurements in static bending tests has 
been proposed [8]. This method does not require any 
knowledge of  the v-K~ dependency. 

In the work of Fett and Munz [8] a constant load 
was applied for a test series and the variation of K~i 
values was caused by scatter in crack sizes of the 
natural small cracks. Since it was not possible to 
measure the initial crack sizes directly, their distribu- 
tion had to be concluded from measurements of the 
so-called "inert bending strength". 

Another possibility for varying the initial stress 
intensity factor K~ is the application of  various bend- 
ing stresses using approximately uniform cracks. Such 
small and sharp cracks can be produced in Knoop 
indentation tests. 
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By differentiating Equation 4 with respect to the 
initial stress intensity factor KI~ one obtains [8] 

2 ( K]i ~2 d[log (Kii)] 

v(Kli) = tra 2 \--~iJ d[log (tfa 2 Yi2)] (5) 

Under the assumption that the crack growth law may 
be expressed by a power law 

v(K~) = A K~ (6) 

Equation 4 can be integrated and this yields the well- 
known lifetime formula 

2 
Kii/, 2) (7) tc ~- Aa 2 Y 2 ( N _  2) 

but in this study such a strong restriction is not 
necessary. 

3. Procedures for determinat ion of 
crack growth  rates 

Two different procedures are possible to evaluate 
Equation 5: 

(i) If the contour of the initial crack after failure can 
be detected with a microscope, the two half-axes a~ and 
q of the semi-elliptic crack can be measured and Y~ can 
be calculated. Because ai is known, Equation 5 can be 
rewritten as 

(ai) d[log (K,])] 
v(Kli) = -- ~ d[log (a2tryi2)] (8) 

The initial stress intensity factor has to be known for 
correlating the crack growth rates by a v-K, plot. This 
evaluation is possible for Knoop cracks in glass. Fig. 
1 shows such a crack. 

(ii) If the cracks cannot be identified after failure, 
the initial crack size can be replaced by the inert 
bending strength 

a c = Yia~/2 (9) 

r~ 2Cc-- ,r 

~-2Ci~ j 

ai t 
.A_ Qc 

A 

Figure 1 Fracture mirror after failure in a lifetime test. lnner con- 
tour: initial crack size after indentation test. Outer contour: crack 
size at failure. 

i.e. the strength without subcritical crack extension. 
Inserting Equation 9 into Equation 5 gives a modified 
relation 

2 (Kic'] 2 d[log (Kii/Klc)] 
V(Kli) - tra~ \~ i i J  d[log (/f0 "2 Yi2)] 

(10) 

where the initial value of Y~ is assumed to be the same 
for all cracks produced under identical conditions. 

In this study the first method was applied. 

4. Experiments and results 
4.1.  M e a s u r e m e n t s  
The experiments were performed with 4mm x 
5ram x 45mm specimen cut out from plates of a 
commercial borosilicate glass (BK 7, Glaswerke 
Schott, Mainz) with a transition temperature of 
560 ° C. After machining, the specimens were annealed 
at 470°C for 5 h. By Knoop indentation with 50N 
indentation load the specimens were damaged in a 
controlled manner. 

The specimens were then annealed again (470 ° C, 
5 h) to remove stresses at the crack tip due to wedging 
forces in the damaged region below the Knoop 
indcntor. 

In static four-point bending tests, lifetimes were 
determined in water at 20°C for several bending 
stresses. The tests were finished after 1000 h and the 
survival specimens qualified as "through runs". The 
results are shown in Fig. 2. It is remarkable that no 
failure occurs below 18 MPa, although fracture would 
be expected there by a linear extrapolation of the 
measured lifetime points. The initial crack sizes a~ and 
the initial aspect ratios ai/q were measured under an 
optical microscope. 

In Fig. 3 the data for the initial cracks are plotted as 
Weibull diagrams. By use of the "maximum likelihood 
method" one obtains for the crack depth a i a median 
value (i.e. the value for 50% cumulative frequency) of 

( a i )  = 0.32 

and a Weibull parameter 

m ( a i )  = 5.5 

For the crack length q one obtains 

( c i )  = 0.275 m(ci) = 14 

and for the initial aspect ratio a/q 

( a i / c i )  = 1.2 m(ai/ci) = 7.l 

Due to Equation 9 the Weibull modulus for the inert 
bending strength yields m(o-~) = 2m(ai) = 11. This 
value is higher than one can expect in the case of 
natural crack distributions. 

By plotting the initial aspect ratio ai/q as a function 
of the initial crack depth a~ (Fig. 4) one can see that 
there is no independence between the two characteris- 
tic crack data. 

4.2. Calculation of stress intensity factors 
To calculate the initial stress intensity factors the cor- 
rection function Y as a function of the aspect ratio a/c 
and the normalized crack depth a/t (t = thickness of 
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the specimen) has to be known. Extensive computa- 
tions of correction functions for semi-elliptical surface 
cracks were performed by Newman and Raju [9] in the 
ranges 0.2 ~< (a/c) ~< 2 and 0 ~< (a/t) ~ 0.8 for ten- 
sion as well as for bending using the finite-element 
method. Unfortunately, only the bending data for 
(a/c) ~< 1 were expressed by formulae, so one has to 
interpolate their tabulated values to obtain Y for 
(a/c) > 1. 

4.2. 1. Local stress intensity factors 
If Yis only of interest for the deepest point of the crack 
(YA) and the surface points (YB) - which is the case 
in this investigation - one can fit the data by 

--0.39443 + 2 .10145(a)  -2/3 

_ 0.544673 ( a )  -4/3 

-- [1.9774 -- 0.4207 ( a ) l  ( t )  (11) 

= --0.1066 1.5(c)] YB 1.28(c) °'4 [1 + 
(a) ,2(: )  

(12) 

for 1 ~< (a/c) <~ 2, (a/t) <~ 0.6 and (c/b) <<. 0.2, 
where b is the half-width of the cracked specimen. 

If(c/b) > 0.2, the correction functions YA, YB have 
to be multiplied by a finite-width correction fw given 
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Figure 2 Lifetimes of Knoop-damaged glass specimens as 
a function of the bending stress applied. 
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4.2.2. A v e r a g e d  stress in tensi ty  factors 
For brittle materials the question arises whether crack 
growth and also unstable fracture are governed by the 
local values of the stress intensity factor at the con- 
sidered point of the crack front. It seems to be necess- 
ary to use an average K value taking into account 
neighboured K values near this location. Cruse and 
Besuner [10] proposed averaged stress intensity factors 
in fatigue crack growth evaluation, calculated by 

4 
f Y2(~b) sin2(~b) d~b (14) YA 

and 
4 i 

f Y2(qS) cos2(~b) de  (15) Y2 = 7 

for the points A and B at the crack contour. 
Since the function Y(qS) is given by published for- 

mulae [9], the numerical evaluation of Equations 14 
and 15 can be easily performed for (a/c) ~< 1. In case 
of 1 < (a/c) ~< 2 the results tabulated [9] can roughly 
be expressed by 

I~, --- 1 . 2 ( c ) ° s s - [ 0 . 8 2 + 0 . 5 3 ( c ) J ( t  ) (16, 

,47  023( ) 
- I0.425 + 0 . 3 5 ( c ) ] ( t  ) (17) 

for (a/t) < 0.5 and (c/b) < 0.2. 

Figure 3 Cumulative distribution function F of 
(a) the initial crack data for (e) and (o) ai, ci, and 
(b) the initial aspect ratio ai/c i. 
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Figure 4 Relation between the initial aspect ratio and the initial 
crack depth. 
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Figure 6 Kj~ against tfo -2 Y° 2 for evaluating Equation 8. 

Fig. 5 shows the geometric functions I?A and I% in 
the depth range of 0 ~< (a/t) <~ 0.1. For the range 
of measured aspect ratios one can approximately 
conclude 

2 
I P A ,  I '~B ~ ~ 1 / 2  + 0.2 

4.3. Eva lua t ion  
For evaluating Equation 8, first K~ was plotted against 
tfo "2 Yi 2 (Fig. 6). In this representation the scatter of 
data points is evidently reduced compared with Fig. 2. 
For K~i > 0.3 M P a m  ~/2 the curve is approximately a 
straight line. The slope is found to be 

d[log (KI0] 
= - 0.0837 

d[log (aztr yi2)] 

in this range. 
This indicates that the crack growth law can be 

expressed by the power law of Equation 6, for not too 
low crack growth rates. In this case it results by use of 
the approximation of Equation 7 that 

d[log (/~,,)1 -- 1 

d [ l o g  (o-2trYi2)] n - 2 

and hence n = 13.9 in accordance with literature data 
[1, 2]. 
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Figure 5 Geometric functions ( . . . . . . .  ) ?A and ( )e.. 

After determination of I?~ using Equation 11 and 
calculation of the initial stress intensity factors by 
applying Equation 1, the v-K~ curve represented in 
Fig. 7 was evaluated using Equation 5 and the slope in 
Fig. 6 of -0 .0837.  For  values KI > 0.35 MPa m ~ a 
power law with n = 14 can be obtained. For  R~ < 
0 .35MPam 1/2 no crack growth is detectable and a 
threshold stress intensity factor RIt~ is found to be 

/ ~ l t h  ~--- 0.35 MPaml/2 

The crack growth law can be written 

v = 0.010MPa 14m-6sec ~R] 4 

for & > 0 .35MPam 1/2 

v = 0 

for R~ < 0 .35MPam 1/2 (18) 
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Figure 8 Weibull representation of (a) the aspect ratio at failure and 
(b) the fracture toughness K~c. 

In addition, the same procedure was performed once 
more but now using local stress intensity factors. The 
results are also plotted in Fig. 7. The crack growth law 
obtained is given by 

v = 0.0016MPa-14m 6sec 1 / ~ 4  

for K~ ~> 0.38 MPa m 1/2 

v = 0 

for K1 < 0 . 3 8 M P a m  1/2 (19) 

As the crack dimensions at failure had been 
measured too, the median value of the fracture tough- 
ness was determined as (K~0) = 0.78 MPa m ~/2 with a 
Weibull modulus of  m(Kic) = 10.0 (Fig. 8). In con- 
trast to the initial cracks the aspect ratio at failure was 
found to be significantly smaller, (a/c)r = 0.61, and 
a distinctly higher Weibull modulus resulted, namely 
m(a/c)f = 11.7 (Fig. 8). 

To understand this behaviour, the time-dependent 
crack development was calculated step by step. Start- 
ing with the initial crack quantities a i and c i the accom- 
panying correction functions YA and YB were com- 
puted. For (a/c) ~< 1 the well-known formulae [9] 
were applied and in the case of (a/c) > 1 Equations 
13, 16 and 17 were used. 

The operative stress intensity factors K~A and K m 
result from Equation 1. In the time step dt the crack 
size increments were computed as 

da = v(KIA) dt 

dc = v(Km) dt 

where the crack growth law V(Kl) is given by Equation 
18. The crack increments were added to the old values 

a ~ a + d a  

c ~ c + d c  

and the shape of the crack regarded as remaining 
semi-elliptical. For the following time steps the whole 
procedure had to be repeated until the maximum/£1 
factor reached the fracture toughness K~c. 

Fig. 9 shows the development of  the crack shape for 
two bending stresses. It  can be seen that the initial 
relatively high scatter of  ai/ci is already strongly 
reduced after a small amount  of  crack extension in 
depth. The crack shape at failure for a given stress 
is independent of  the initial value after some crack 
extension, influenced only by the different stresses 
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Figure 9 Development of  the aspect ratio during crack extension for 
two bending stresses. (ll) Failure for a = 25 MPa; (e) failure for 
a = 20 MPa; (O) starting point. 

applied. From this point of  view the measured crack 
data at failure can be understood completely. 

5. S u m m a r y  
A method is presented to determine subcritical crack 
growth rates from lifetime measurements on Knoop-  
damaged bending bars and especially outlined for the 
case of  directly measurable crack dimensions. 

The procedure is a modification of a technique 
proposed earlier [8] where the variation of the stress 
intensity factors applied was due to the scatter of  
natural crack sizes. Here the variation is adjusted by 
the application of different stresses. 

As a model material glass in water was investigated, 
and by crack size measurements after failure its frac- 
ture toughness was found to be K~c = 0.78 M P a m  ~/2. 
The resulting v-Kj curve can be described by a power 
law with an exponent n = 14 for Kj > 0 . 3 5 M P a m  1/2 
and by a threshold value of about Kith = 0.35 M P a m  1/z 
below which no subcritical crack growth could be 
detected. Thus the existence of a threshold in glass at 
first observed by Wiederhorn and Bolz [1] and Evans 
[2] could be confirmed. The measured threshold value 
is in good agreement with results reported by Sim- 
mons and Freiman [11] for borosilicate glass. 

The crack data at failure can be obtained from the 
initial data by stepwise calculation of the crack 
development. 
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